

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

PRACTICE

JUNE 2024

MARKING GUIDELINE

MARKS: 150

TIME: 3 HOURS

1.1	$m_{\rm AD} = m_{\rm BC} = \frac{3+1}{2-6}$	√substitution
	= -1	√ m
	y = -x + c Sub A(-3; 3): $3 = -(-3) + c$ $c = 0$	√substitution
	$\therefore y = -x$	✓ equation (4)
1.2	$D(x; y) \rightarrow y = -x$	
	BD = CD \rightarrow BD ² = CD ² : $(2-x)^2 + (3-y)^2 = (6-x)^2 + (-1-y)^2$ $(2-x)^2 + (3-(-x))^2 = (6-x)^2 + (-1-(-x))^2$ $4-4x+x^2+9+6x+x^2=36-12x+x^2+1-2x+x^2$	✓ BD = CD $✓ substitution$ $✓ y = -x$
	16x = 24	√simplification
	$x = \frac{24}{16} = \frac{3}{2}$	✓ x -value
	$y = -\frac{3}{2}$	✓ y -value
	$\therefore D\left(\frac{3}{2}; -\frac{3}{2}\right)$	(6)
1.3	$\frac{3+\frac{3}{2}}{2} = 0$	√substitution
	$m_{\rm BC} = \frac{3 + \frac{3}{2}}{2 - \frac{3}{2}} = 9$	✓ answer (2)
1.4	let \angle of inclination of BC be α and \angle of inclination of BD be β	√ tan = m
	$ \tan \alpha = m_{\text{BC}} \qquad \qquad \tan \beta = m_{\text{BD}} \tan \alpha = -1 \qquad \qquad \tan \beta = 9 \alpha = 135^{\circ} \qquad \qquad \beta = 83,7^{\circ} $	√ angles
	$\theta = \alpha - \beta$ $= 135^{\circ} - 83.7^{\circ}$ $= 51.3^{\circ}$	✓ difference ✓ answer (4)
1.5	$BD^{2} = CD^{2} = \left(2 - \left(\frac{3}{2}\right)\right)^{2} + \left(3 - \left(-\frac{3}{2}\right)\right)^{2} = \frac{41}{2}$	✓ substitution ✓ BD=CD
	∴ BD = CD = $\frac{\sqrt{82}}{2}$ units BDC = 180° - $(51,3^{\circ} \times 2)$ = $77,4^{\circ}$	√ BDC
	Area _{$\triangle ABC$} = $\frac{1}{2} \left(\frac{41}{2} \right) \sin 77.4^{\circ} = 10$ square units	✓sub in Area Rule ✓answer (5)

[21]

2.1.1	$x^{2} + 8x + (4)^{2} + y^{2} - 6y + (-3)^{2} = -9 + (4)^{2} + (-3)^{2}$ $(x + 4)^{2} + (y - 3)^{2} = 16$	✓ substitution ✓ centre-
		radius form
	∴ centre (-4;3)	√answer (3)
2.1.2	Circle 0: $r_0 = 1$ unit 0 (-1; 3) Circle M: $r_M = 4$ units	✓ r _O ✓ r _M
	OM = 3 units	✓ OM
	Since: $OM = r_M - r_O$	√conclusion
	∴ circles touch internally	(4)
2.2.1	$y = x + 2$ $\therefore m_{AC} = 1$	(1)
	$\Rightarrow m_{\rm AB} = -1$ $\tan \perp {\rm rad}$	✓ S/R
	sub M(4; 4) $4 = -(4) + c$	✓ substitution
	$c = 8 \qquad \qquad \therefore y = -x + 8$	√eqn (3)
2.2.2	At A: $x + 2 = -x + 8$ 2x = 6	√equating
	x = 3	✓ <i>x</i> -val
	y=(3)+2=5 :: A (3;5)	(2)
2.2.3	$y = (3) + 2 = 5 \qquad \therefore A(3; 5)$ $(x-4)^2 + (y-4)^2 = r^2$	$\checkmark(x-4)$
		(y-4)
	sub A (3; 5): $r^2 = (3-4)^2 + (5-4)^2 = 2$	√sub √r
	$\therefore (x-4)^2 + (y-4)^2 = 2$	√eqn (4)
2.2.4	$\frac{x_{\rm B}+3}{2}=4 \qquad \qquad \frac{y_{\rm B}+5}{2}=4$	
	$x_{\rm B} + 3 = 8$ $y_{\rm B} + 5 = 8$	$\checkmark x_{\rm B}$
	$x_{\rm B} = 5 y_{\rm B} = 3$	$\sqrt{y_{\rm B}}$
	∴ B(5; 3)	Answer Only: full marks
		(2)
2.2.5	$AC \mid\mid BD$ (co-int $\angle s =$)	✓ S/R
	$m_{ m AC}=m_{ m BD}=1$	√ = m
	sub B(5; 3): $3 = 5 + c$	√substitution
	$c = -2 \qquad \qquad \therefore y = x - 2$	√eqn (4)

[22]

3.1	$\sin \alpha = \frac{8}{17}$ $x = \sqrt{(17)^2 - (8)^2}$ $x = -15$	(-15; 8) 8 15	√diagram
3.1.1	$=3\left(\frac{8}{-15}\right)=-\frac{8}{5}$		$\checkmark x$ -val \checkmark answer (3)
3.1.2	$= \cos \alpha$ $= -\frac{15}{17}$ $= \cos^2 \alpha - \sin^2 \alpha$		$\checkmark \cos \alpha$ $\checkmark \text{answer}$ (2)
3.1.3	$= \cos^{2} \alpha - \sin^{2} \alpha$ $= \left(-\frac{15}{17}\right)^{2} - \left(\frac{8}{17}\right)^{2}$ $= \frac{161}{289}$		✓ expansion ✓ substitution ✓ answer (3)
3.2	$\sin \theta \cos \theta = \frac{k}{4}$ (× 2): $2 \sin \theta \cos \theta = \frac{k}{2}$	k 2	$\checkmark \times 2$ $\checkmark \sin 2\theta$
	$\sin 2\theta = \frac{k}{2}$	$\sqrt{4-\mathbf{k}^2}$	✓ diagram ✓ x-val / adj
	$\therefore \tan 2\theta = \frac{k}{\sqrt{4 - k^2}}$	v	√answer (5)

[13]

QUEST	IUN 4	
4.1	$2\cos(90^{\circ} + 15^{\circ})\cos 15^{\circ}$	$\sqrt{\cos(45^{\circ}-x+x)}$
	$= \frac{1}{\cos(45^\circ - x + x)}$	
		✓ sin 15°
	2 sin 15° cos 15°	
	$={\cos 45^{\circ}}$	√ cos 45°
		√ cos 30°
	$= \frac{\sin 30^{\circ}}{\cos 45^{\circ}} = \frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}}$	$\sqrt{\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}}}$
	$\frac{1}{\sqrt{2}}$	V 1/2
	$=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$	\checkmark answer (6)
4.2.1	$\cos \theta + \sin \theta \qquad \cos \theta + \sin \theta$	✓ ×conjugate
1.2.1	$RHS = \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} \times \frac{\cos\theta + \sin\theta}{\cos\theta + \sin\theta}$	/ conjugate
	$=\frac{(\cos\theta+\sin\theta)^2}{\cos^2\theta-\sin^2\theta}$	$\sqrt{\cos^2 \theta - \sin^2 \theta}$
	$-\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}$	
		√expansion
	$=\frac{\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta}{2}$	
	$\cos 2\theta$	✓ cos2θ
	1 ± sin 20	
	$= \frac{1 + \sin 2\theta}{\cos 2\theta} = LHS$	√ 1 (5)
	OR	
	$\cos^2 \theta + 2 \sin \theta \cos \theta + \sin^2 \theta$	√expansion
	LHS = $\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta - \sin^2 \theta}$	$\sqrt{2} \sin \theta \cos \theta$
		$\sqrt{\cos^2 \theta - \sin^2 \theta}$
	$(\cos\theta + \sin\theta)^2$	
	$-\frac{1}{(\cos\theta+\sin\theta)(\cos\theta-\sin\theta)}$	√square
		√factors
	$= \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} = RHS$	(5)
	$\frac{-\cos\theta - \sin\theta}{\cos\theta}$	
4.2.2	$\cos 2\theta = 0 ref \ \angle = 90^{\circ}$	$\sqrt{\cos 2\theta} = 0$
	$2\theta = 90^{\circ} + k.360^{\circ}$	$\checkmark 45^{\circ} + k.180^{\circ}$
4.2.2	$\theta = 45^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$	
4.2.3	$=\frac{1+\sin 30^{\circ}}{\cos 30}$	V
	cos 30	
	$1 + \frac{1}{2}$	✓ substitution
	$=\frac{1+\frac{1}{2}}{\frac{\sqrt{3}}{2}}$	· Substitution
	$\frac{\sqrt{3}}{2}$	
	2	
	$=\sqrt{3}$	√answer (3)
4.3	$7\cos x - 2(1 - \cos^2 x) + 5 = 0$	√ expansion
	$7\cos x - 2 + 2\cos^2 x + 5 = 0$	1
	$2\cos^2 x + 7\cos x + 3 = 0$	✓std form
	$(2\cos x + 1)(\cos x + 3) = 0$	√factors
	$\cos x = -\frac{1}{2} \qquad \qquad \text{or} \qquad \qquad \frac{\cos x = -3}{\cos x}$	$\sqrt{\cos x} = -\frac{1}{2}$
	$x = 120^{\circ} + k.360^{\circ}$ $\therefore n/a$	$\sqrt{\cos x} = -3$
	$x = 120^{\circ} + k.360^{\circ}$ $x = 240^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	$\sqrt{\cos x} = -3$ $\sqrt{\sin x}$ answers (7)
	x - 440 + K.300 ; K = L	* * allswels (/)

[24]

5.1	a = 2	✓
	b = 2	✓ (2)
5.2	f: 180°	✓
	g: 360°	√ (2)
5.3	amplitude: 1	✓ (1)
5.4	$y \in [2; 4]$	✓ end points
		√ notation
		(2)
5.5	$-180^{\circ} < x < 0^{\circ}$; $x \neq -90^{\circ}$	√end points
		✓ notation
	OR	$\checkmark x \neq -90^{\circ} (3)$
	$x \in (-180^{\circ}; 90^{\circ}) \cup (90^{\circ}; 0^{\circ})$	√√end points
		✓notation (3)
5.6	$h(x) = \sin(2x + 45^\circ)$	√ √
		(2)
5.7	$k(x) = -2\cos x$	√ √
		(2)

[14]

QUESTION 6

6.1	$AC^{2} = AB^{2} + BC^{2} - 2. AB. BC. \cos A\widehat{B}C$ $= a^{2} + 4a^{2} - 2(a)(2a). \cos 2\beta$ $\therefore AC = \sqrt{5a^{2} - 4a^{2} \cos 2\beta}$ $= \sqrt{a^{2}(5 - 4 \cos 2\beta)}$ $= a\sqrt{5 - 4 \cos 2\beta}$	✓ cosine rule ✓ substitution ✓ answer (3)
6.2	In $\triangle ADC$: $\tan \beta = \frac{AD}{a\sqrt{5 - 4\cos 2\beta}}$ $AD = \tan \beta \cdot a\sqrt{5 - 4\cos 2\beta}$	✓ trig ratio ✓ substitution
	$= a \tan \beta \sqrt{5 - 4(1 - 2\sin^2 \beta)}$ $= a \tan \beta \sqrt{5 - 4 + 8\sin^2 \beta}$ $= a \tan \beta \sqrt{1 + 8\sin^2 \beta}$	$\sqrt{1-2\sin^2\beta}$ $\sqrt{\sinh^2\beta}$ simplification (4)

[7]

7.1.1	100°	ext∠of∆	√S √R	(2)
7.1.2	50°	∠ at cent = 2∠ at CFCE	√S √R	(2)
7.1.3	130°	opp ∠s of cyclic quad = 180°	√S √R	(2)
7.1.4	$78^{\circ} - 50^{\circ} = 28^{\circ}$	corres ∠s ; AOF EH	√S √R	(2)
7.2	Let $\hat{C} = x$ $\therefore A\hat{D}B = x$ $\& A\hat{O}B = 2x$ $\hat{A}_1 = A\hat{D}B = x$ $\therefore \hat{E}_1 = 180^\circ - 2x$ $\therefore \hat{E}_2 = 2x$	∠s in same segment ∠ at cent = 2∠ at CFCE alt ∠s; AC BD sum of ∠s in Δ ∠s on a str. line	✓S/R ✓S/R ✓S/R ✓S/R ✓S/R	
	$\widehat{E}_2 = A\widehat{O}B = 2x$ \Rightarrow AEOB is a cyclic quadrilateral	converse ∠s in same segment	√R	(6)

[14]

QUESTION 8

8.1	Construction: Draw KS =	PQ and KT = PR. Join ST	√construction
	In \triangle KST and \triangle PQR: 1. KS = PQ 2. $\widehat{K} = \widehat{P}$ 3. KT = PR	(constr) (given) (constr)	
	$\begin{array}{ll} \therefore \Delta KST &\equiv \Delta PQR \\ \Rightarrow \hat{S}_1 &= \hat{Q} \\ \& \hat{Q} &= \hat{L} \\ \therefore \hat{S}_1 &= \hat{L} \end{array}$	(S; A; S) $(\Delta KST \equiv \Delta PQR)$	√S/R √S/R
	∴ ST LM	(corres ∠s =)	√R
	$\therefore \frac{\mathrm{KL}}{\mathrm{KS}} = \frac{\mathrm{KM}}{\mathrm{KT}}$	(Prop. Int. Theorem; ST LM)	√S/R
	but KS = PQ & KT = PR		√S
	$\therefore \frac{KL}{PQ} = \frac{KM}{PR}$		(6)

NSC – MARKING GUIDELINE

8.2.1	Ê	∠s opp = sides =	√S √R	
	\widehat{D}_1	tan-chord theorem	√S √R	(4)
8.2.2	$\hat{F} = \hat{D}_1$	above	√S	
	∴ DE = EF	sides opp = ∠s =	√R	(2)
8.2.3	$\widehat{G}_2 = 180^{\circ} - 2x$	sum of ∠s in ∆	√S √R	
	$\hat{G}_1 = 2x$	∠s on a str. line	√S/R	
	-			
	$\therefore D\widehat{O}E = 4x$	∠ at cent = 2∠ at CFCE	√S/R	(4)
8.2.4	In ΔFDE and ΔFEG:			
	1. F is common		√S	
	$2. \ \widehat{D}_1 = \widehat{E}_3$	above	√S	
	∴ ΔFDE ΔFEG	(∠; ∠; ∠)	√R	
			/ -	
	$\therefore \frac{\text{FD}}{\text{FE}} = \frac{\text{FE}}{\text{FG}}$	ΔFDE ΔFEG	√S	
	FE FG			
	$\Rightarrow FE^2 = FD \times FG$			(4)
	/ ID / ID / I'U			(4)

[20]

QUESTION 9

9.1	$R\widehat{V}W = 90^{\circ}$ $R\widehat{P}N = 90^{\circ}$ $\therefore TW \mid\mid SN$		tan ⊥ radius line from cent to midpt of ch ⊥ ch corres ∠s =	✓S ✓R ✓S/R ✓R	(4)
9.2	$\frac{RS}{ST} = \frac{RN}{NW}$	(Prop. Int. Theo	orem; SN TW)	√S √R	
	$\frac{10}{7} = \frac{RN}{6}$				
	$RN = \frac{60}{7}$			✓ RN	
	$NK = RK - RN$ $= 10 - \frac{60}{7}$			✓	
	$= \frac{10}{7} \text{ units}$			✓	(5)

9.3	$WV^{2} = RW^{2} - RV^{2}$ $= \left(\frac{60}{7} + 6\right)^{2} - (10)^{2}$	(Pythag)	✓ R
	WV = 10,598211		✓ substitution ✓ WV
	$\frac{PN}{WV} = \frac{RN}{RW}$	(ΔRPN ΔRVW)	√S/R
	$\frac{PN}{10,598211} = \frac{\frac{60}{7}}{\frac{60}{7} + 6}$		✓substitution
	PN = 6,23 units		✓PN (6)
		OR	
	$\frac{RP}{RV} = \frac{RS}{RT}$	(Prop. Int. Th; TW SN)	√S √R
	$\frac{RP}{10} = \frac{10}{17}$		
	$RP = \frac{100}{17}$		√RP
	$PN^2 = RN^2 - RP^2$	(Pythag)	✓R
	$= \left(\frac{60}{7}\right)^2 - \left(\frac{100}{17}\right)^2$		✓substitution
	= 6,23 units		✓PN (6)
	1		(0)

[15]

TOTAL MARKS: 150